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The Greenberger–Horne–Zeilinger (GHZ) paradox is an exquisite no-go theorem that shows the
sharp contradiction between classical theory and quantum mechanics by ruling out any local realistic
description of quantum theory. The investigation of GHZ-type paradoxes has been carried out in
a variety of systems and led to fruitful discoveries. However, its range of applicability still remains
unknown and a unified construction is yet to be discovered. In this work, we present a unified
construction of GHZ-type paradoxes for graph states, and show that the existence of GHZ-type
paradox is not limited to graph states. The results have important applications in quantum state
verification for graph states, entanglement detection, and construction of GHZ-type steering paradox
for mixed states. We perform a photonic experiment to test the GHZ-type paradoxes via measuring
the success probability of their corresponding perfect Hardy-type paradoxes, and demonstrate the
proposed applications. Our work deepens the comprehension of quantum paradoxes in quantum
foundations, and may have applications in a broad spectrum of quantum information tasks.

I. INTRODUCTION

One of the most prominent features about quantum
mechanics (QM) is its intrinsic nonlocality [1], namely,
QM cannot be reconciled with local realism [2], thus no
local-hidden-variable (LHV) models can completely re-
produce the predictions of quantum theory. Since its
discovery, quantum nonlocality has found many signifi-
cant applications in quantum computation [3–5], device-
independent quantum key distribution [6–8], and genuine
random number generation [9, 10]. It is also a kind of
resource playing a vital role in the field of quantum
information [11, 12]. The Bell-type inequalities, which
bound the correlations produced by any LHV models
but can be statistically violated by QM, are arguably
the most common tools for revealing the nonlocality.
Some renowned examples include the two-qubit Clauser-
Horne-Shimony-Holt inequality [13] and the multi-qubit
Mermin-Ardehali-Belinskĭı-Klyshko inequality [14–16].

Strikingly, in some measurement scenarios, QM and
LHV models give contradictory predictions on whether a
specific set of outcomes is even possible. Proofs of non-
locality stemmed from these scenarios are termed pos-
sibilistic nonlocality [17]. They occupy a strictly higher
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hierarchy than the statistical proof in the sheaf-theoretic
approach, and can reveal the nonlocality of QM using
very few measurements and copies of states prepared.
The first proof of possibilistic nonlocality, due to Green-
berger, Horne and Zeilinger (GHZ) [18], uses three qubits
to formulate a paradox ‘+1c = −1q’ in every round of
experiment. Here, the terminology +1c = −1q denotes
the contradictory predictions given by the quantum and
classical theory for the measurement outcome of an ob-
servable. Two-qubit systems can also manifest possibilis-
tic nonlocality, but with a success probability of less than
1, and this way of observing nonlocality is later entitled
Hardy’s paradox [19]. Furthermore, Hardy’s paradox has
been generalized to the multi-setting scenarios [20], mul-
tipartite [21] and high-dimensional [22] systems.

The research of the GHZ paradox has achieved vigor-
ous developments. It was experimentally tested [23] with
three qubits, and can be observed in a fault-tolerant man-
ner by using non-abelian anyons [24] to avoid the detec-
tion loophole. Besides the GHZ states, the earlier GHZ-
type paradox is also known to be present in other pure
states, such as the linear cluster states [25] and, more
generally, a class of highly entangled multipartite states
called graph states [26]. The investigation of the GHZ-
type paradox has a continuous interest, since there are
still some remnant issues with particular importance that
require further investigation: (i) it is currently unknown
whether a GHZ-type paradox can be exploited to deter-
mine a graph state; (ii) it is also not clear whether GHZ-
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type paradoxes exist for the states that are not equiva-
lent to graph states under local unitary; and (iii) there is
no known method to experimentally test of a GHZ-type
paradox with an efficient way, i.e, through its equivalent
Hardy’s paradox. Resolution to these issues may yield
significant applications of quantum paradoxes.

In this article, we address the above issues to advance
the study of GHZ-type paradoxes in quantum mechanics:
First, a unified construction for the GHZ-type paradox is
presented, naturally including all the previous results for
graph states. For a graph with odd number of total ver-
tices and at least one vertex being universal (i.e, connect-
ing all the other vertices), observation of the GHZ-type
paradox verifies the corresponding graph states, and ef-
ficiently detects multipartite entanglement. Second, due
to a Hamiltonian description, some single-qubit Clifford
equivalent graph states, their coherent superpositions
and convex mixtures are also found to have the GHZ-
type paradoxes. As such, the GHZ-type paradox exists
beyond the graph states. Interestingly, for the convex
mixtures of some single-qubit Clifford states that sup-
port the GHZ-type paradox +1c = −1q for Bell nonlo-
cality, GHZ-type paradoxes 1c = 2q for EPR steering [27]
can be established, thus manifesting the sharp contradic-
tions between a broader class of semiclassical models and
quantum theory. Finally, the GHZ-type paradoxes can
be converted to the perfect Hardy’s paradox, on which
we perform an experimental test through measuring the
success probability in Hardy’s paradox, thus providing an
efficient way to reveal the GHZ-type paradoxes. Our ex-
perimental results are in agreement with the theoretical
predictions with high accuracy, thus advance the study
of the field of quantum paradoxes.

II. RESULTS

A. GHZ-type paradox for graph states

To introduce the idea of GHZ-type paradoxes, we begin
with an explicit example based on the 3-qubit GHZ state
|GHZ3〉 = (|000〉 + |111〉)/

√
2. In this case, the results

of the Pauli measurements,

[E1 = σ1
xσ

2
xσ

3
x] |GHZ3〉 = + |GHZ3〉 ,

[E2 = σ1
xσ

2
yσ

3
y] |GHZ3〉 = − |GHZ3〉 ,

[E3 = σ1
yσ

2
xσ

3
y] |GHZ3〉 = − |GHZ3〉 ,

[E4 = σ1
yσ

2
yσ

3
x] |GHZ3〉 = − |GHZ3〉 ,

(1)

cannot be interpreted by any LHV model: when we as-
sign the dichotomic values v = ±1, as pre-determined
by the hidden variables, to each measurement outcome,
σiν → viν , ν ∈ {x, y, z}, i ∈ {1, 2, 3}, they must sat-
isfy v1xv

2
xv

3
x = +1, v1xv2yv3y = −1, v1yv2xv3y = −1, and

v1yv
2
yv

3
x = −1 in order to recover the predictions of

QM. However, multiplying over these equations yields

−1q
LHV
= (v1x)2(v1y)2(v2x)2(v2y)2(v3x)2(v3y)2 = +1c, a sharp

contradiction.
The graph state is the common eigenstate of the stabi-

lizing operators [28] for an undirected, connected graph
G, which has m vertices. We define Cji as the connectiv-
ity of the vertices i and j, so that Cji = 1(0) means that
vertices i and j are connected (disconnected). For each
vertex i, the stabilizing operators read:

Si = σix
∏
j 6=i

(σjz)
Cj

i , (2)

where i, j = 1, 2, · · · ,m; σx,y,z are Pauli matrices; and
(σjz)

Cj
i = σjz(11) if Cji is 1(0). The operators Si are invo-

lutory and mutually commutative, and serve as the gener-
ators of an abelian group, namely, the stabilizing group.
The ground state of the Hamiltonian H = −

∑m
i=1 Si

is then defined as the graph state |G〉 (i.e. Si|G〉 =
+|G〉, ∀i ∈ {1, · · · ,m}). To construct the GHZ-type
paradox, we focus on a vertex labelled as 1 with a degree
of n+1, where 3 ≤ n ≤ m. Without loss of generality, its
neighbor vertices are labelled as 2, 3, . . . , n, and the other
vertices unconnected to it are labelled n+1, n+2, . . . ,m.
Then, the following theorem then holds.

{E} :=
(for odd n)

{(−1)aiSai
1 SiSi+1 | i ∈ {2, · · · , n− 1}}

∪ {S1} ∪ {San
1 Sj | j ∈ {2, n}}

{E} :=
(for even n)

{(−1)aiSai
1 SiSi+1 | i ∈ {2, · · · , n}}
∪ {S1}

Symbols
definition

ai = 1 + Cn
2 +

∑n−1
k=2,k 6=i C

k+1
k

Sai
1 =

{
S1, if Mod[ai, 2] = 1,

11, if Mod[ai, 2] = 0,
, Sn+1 = S2

Table 1. Construction of GHZ-type paradoxes for
graph states. The set of observables {E} as defined herein
manifests a GHZ-type paradox for a graph state |G〉 with its
graph representation G having connectivity Cj

i , and the sta-
bilizing operators of |G〉 being Si.

Theorem 1.— A GHZ-type paradox can be formulated
from the observables E in Table. 1. The cardinality of
{E} is n+ 1 when n is odd, and n when n is even.

A sketch of the construction of Theorem 1 is presented
in the Methods section, and the detailed proof for it is
provided in Supplementary Information (SI) [29]. In SI,
we apply the Theorem 1 on all possible graphs with m =
3 and 4 to recover the GHZ-type paradoxes above and in
[18, 25]. A concrete example for m = 4 is as follows.
Example 1.—Consider a (m,n) = (4, 3) linear graph

connected as 2—1—3—4. Its connectivity reads C2
1 =

C3
1 = C4

3 = 1, and the other C values are zero. The
ground state of H is the 4-qubit cluster state with the
form |G〉 = (|+0 + 0〉+|+0− 1〉+|−1− 0〉+|−1 + 1〉)/2,
where |±〉 = (|0〉 ± |1〉)/

√
2. From theorem 1, we

have a2 = a3 = 1, so the GHZ-type paradox can be
derived from operators {S1 = σ1

xσ
2
zσ

3
z11,−S1S2S3 =
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Fig. 1. Five-qubit graph states and their verification.
There are four inequivalent 5-qubit graph states, namely, the
GHZ states |G5〉, the linear cluster state |LC5〉, the Y state
|Y5〉 and the ring cluster state |RC5〉. We derive the relation
between the violation of the Bell’s inequality I5 ≤ 4 and the
fidelity between the tested and target states. The colored
region means at least two qubits are entangled, and a value
exceeding the LHV bound reveals the genuine multipartite
entanglement.

σ1
xσ

2
yσ

3
yσ

4
z , S1S2 = σ1

yσ
2
yσ

3
z11, S1S3 = σ1

yσ
2
zσ

3
yσ

4
z}. Under

local unitary transformation, the ground state is equiv-
alent to the standard form of the cluster state |LC4〉 =
(|0000〉 + |0011〉 + |1100〉 − |1111〉)/2. Then we recover
the usual construction of the GHZ-type paradox for the
4-qubit cluster state as [25]

[E1 = σ1
xσ

2
xσ

3
z11] |LC4〉 =+ |LC4〉 ,

[E2 = σ1
xσ

2
yσ

3
yσ

4
x] |LC4〉 =+ |LC4〉 ,

[E3 = σ1
yσ

2
yσ

3
z11] |LC4〉 =− |LC4〉 ,

[E4 = σ1
yσ

2
xσ

3
yσ

4
x] |LC4〉 =+ |LC4〉 .

(3)

Based on equation (3), we have the quantum prediction
Q =

∏4
i=1〈LC4|Ei|LC4〉 = −1. However, in the LHV

models, the product of the observable σiν ’s expectation
values viν are (v1x)2(v1y)2(v2x)2(v2y)2(v3y)2(v3z)2(v4x)2 = +1,
thus leading to the GHZ-type paradox +1c = −1q.
Quantum state verification.— A GHZ-type paradox is

of particular interest if, using the specific observables,
the paradox can be observed only with a specific graph
state |G〉, similar to the situation of a Bell inequality that
gives a single maximum for |G〉 [30–32]. From the form of
Theorem 1, when m = n is odd, any n operators E can
still generate the n stabilizers of G, so their grand total
cannot have a degenerate ground state. Furthermore,
in the case of n = m, there are no unmeasured qubits
and the GHZ-type paradox constructed from operators
E singles out |G〉.
Entanglement detection.—Theorem 1 also has a signif-

icant application in entanglement detection. In the case
of odd n, we may transform the GHZ-type paradox into
the Bell’s inequality

In =

n+1∑
i=1

fi 〈Ei〉
LHV
≤ n− 1, (4)

with fi = 〈G|Ei|G〉 ∈ {+1,−1}; the maximal violation
is then directly given by IQM

n = n + 1. Note that every
stabilizer appears an even number of times in all E, so∏n+1
i=1 fiEi = 1. Moreover, the second-largest and the

smallest eigenvalues of
∑n+1
i=1 fiEi are n− 3 and −n− 1,

respectively. According to the properties of the spec-
trum, the value of In evaluated for quantum state |ψ〉
can be related to the fidelity of |ψ〉 with respect to the
target graph state. Using the two extremes above, it is
straightforward to conclude that for relatively large In,
the fidelity is sandwiched between (In − n + 3)/4 and
(In + n + 1)/(2n + 2). Therefore, the amount of viola-
tion of (4) gives a lower bound of the fidelity between an
unknown state and the target graph state. Especially,
violating (4) guarantees a fidelity of at least 50%.

Moreover, when the argument is applied to a target
state with a large Schmidt measure [33], a quantum value
In that is well below the LHV bound can still reflect non-
trivial feature of entanglement. For example, the 5-qubit
ring graph state |RC5〉 in Fig. 1 has a Schmidt measure
of 3, so a fidelity of 2−3 = 0.125 with |RC5〉 already
guarantees entanglement. As this only requires achieving
I5 ≥ 2.5 with the Bell-type inequality (4), our construc-
tion has the notable feature of revealing non-classicality
even when the observed correlation is not strong enough
to reject the LHV models.

B. GHZ-type paradox beyond graph states

So far, only graph states have been known to be able to
exhibit GHZ-type paradoxes. Here, we show that there
are GHZ-type paradoxes presenting beyond graph states.
Let us consider the measurement operators in Example
1. We can define a new Hamiltonian H′ = −(E1 + E2 +
E4) +E3, whose ground states are interestingly two-fold
degeneracies, i.e. H′ |LC4〉 = −4 |LC4〉 and H′ |LC ′4〉 =
−4 |LC ′4〉, with |LC ′4〉 = (11 ⊗ 11 ⊗ 11 ⊗ σx) |LC4〉. As
in equation (3), we can verify that the extended cluster
state

|LC4(θ)〉 = cos θ |LC4〉+ sin θ |LC ′4〉 (5)

also exhibits a GHZ-type paradox [29]. For θ 6= 0, π/2, it
is easy to check that the pure state |LC4(θ)〉 is not the
common eigenstate of operators {Si}; it thus cannot be
viewed as a graph state. Therefore, we have a GHZ-type
paradox for the non-graph state |LC4(θ)〉.

Furthermore, let us consider the following mixed state

ρ(θ) = cos2 θ|LC4〉〈LC4|+ sin2 θ|LC ′4〉〈LC ′4|. (6)

It can be verified that a GHZ-type paradox is also
valid and that the paradox is θ-independent (i.e.
Q =

∏4
i=1 tr[ρ(θ)Ei] = −1). In addition, based on

Fig. 1(c) in SI [29], we similarly obtain GHZ-type para-
doxes for other non-graph states, i.e. the extended
GHZ state |GHZ4(θ)〉 = cos θ |GHZ4〉 + sin θ |GHZ ′4〉
and the mixed state ρ′(θ) = cos2 θ|GHZ4〉〈GHZ4| +
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sin2 θ|GHZ ′4〉〈GHZ ′4|, with |GHZ4〉 = (|0000〉 +

|1111〉)/
√

2 and |GHZ ′4〉 = (|1000〉+ |0111〉)/
√

2.
Steering paradox for mixed states.— In 2007, Wiseman

et al. classified quantum nonlocality into three distinct
types: quantum entanglement, EPR steering, and Bell’s
nonlocality [27]. EPR steering is a novel form of nonlo-
cality that lies between entanglement and Bell’s nonlo-
cality. Gisin’s theorem shows that for pure states, en-
tanglement already indicates Bell nonlocality [34], so the
relation among various types of non-classicality is subtler
in mixed states. Here, we demonstrate that the GHZ-
type proof is also applicable to EPR steering and, in
particular, its scope is beyond the two-qubit pure state
scenario [35].

For the mixed state in equation (6), an analogue GHZ-
type paradox 1c = 2q for EPR steering can be estab-
lished, indicating a sharp contradiction between the lo-
cal hidden-state (LHS) model and quantum theory. Con-
cretely, when Alice prepares the state in equation (6), she
keeps the first two qubits and sends the latter two qubits
to Bob. Through EPR steering, Alice will persuade Bob
that his two qubits do not have a LHS description, and
therefore collapse to distinct conditional states according
to Alice’s measurement settings. Here, we demonstrate
the case in which Alice’s qubits subjects to two-settings
measurements, namely, σz ⊗ σz and σy ⊗ σx. According
to the LHS model, the classical prediction for a steering
parameter Is is ILHS

s = 1, but quantum theory gives a
prediction of IQM

s = 2, thus yielding the steering paradox
1c = 2q. The relevant details are given in SI [29].

C. GHZ-type paradoxes verified by Hardy-type
paradoxes

To experimentally verify the GHZ-type paradox for
nonlocality, conventionally the −1 factor between the
quantum and classical predictions has to be demon-
strated. For example, a direct way is to perform four
successive measurements Ei’s on the initial state |LC4〉,
and show, with the help of some interference techniques,
that the final state is eiπ |LC4〉. However, this way is
not particularly amenable to experiment for the following
reasons: (i) a highly pure initial state |LC4〉 is required,
and (ii) each measurement Ei acting on the state |LC4〉
must be nondestructive. To circumvent these difficulties,
we resort to other more effective approaches, which are
related to measuring various probabilities. For instance,
the GHZ-type paradox (3) can be converted to a perfect
case of Hardy’s paradox,

P1 = P (A1
1 +A1

2 +A1
3 = 1) = 0,

P2 = P (A1
1 +A2

2 +A2
3 +A1

4 = 1) = 0,

P3 = P (A2
1 +A1

2 +A2
3 +A1

4 = 1) = 0,

P0 ≡ Psuc = P (A2
1 +A2

2 +A1
3 = 1)

QM
= 1 > 0,

(7)

Here, the first three equations denote the Hardy-type
constraints, and Psuc represents the success probability

for observing a LHV-impossible event. Equation (7) im-
plies that a GHZ-type paradox can be viewed as a per-
fect Hardy’s paradox, for which Psuc equals 1 in quantum
mechanics [36]. The sharp contradiction +1c = −1q in
the GHZ-type paradox is thus equivalent to 0c = 1q in
Hardy’s paradox (where Psuc = 0 for LHV models and
Psuc = 1 for quantum theory; see SI for further details
about the conversion and measurement settings).

D. Experimental implementation

Using a photonic setup, we experimentally tested the
GHZ-type paradoxes for some typical four-qubit graph
and non-graph states via the perfect Hardy-type para-
dox. The steering paradox for the mixed state in equation
(6) was also observed. The three unequivalent GHZ-type
paradoxes for graph states with m ≤ 4 were all tested in
our experiment. Moreover, graph states with more qubits
can be effectively generated in the linear optics setup by
using, for example, the photon fusion gate [38], the polar-
izing beam splitter (PBS) gate [39] and the controlled-z
gate [40]. In SI, we give a recipe for generating all m = 5
graph states.

In this work, the four-qubit state was encoded using
a two photons scheme [41, 42], with each photon’s polar-
ization and path degrees of freedom utilizing two logical
qubits. Fig. 2(a) shows the quantum circuit for flexible
state generation. Starting from a maximally entangled
polarization qubit state of |Φ+〉 = (|00〉 + |11〉)/

√
2, we

applied a controlled-not gate on two path qubits to ob-
tain the GHZ state |GHZ4〉. For cluster state |LC4〉 gen-
eration, two Hadamard gates and a controlled-z gate op-
erating on the polarization qubits converted the state to
(|+ + 00〉 + |+− 11〉)/

√
2. We then projected the first

two qubits of the input state onto |00〉 〈00|+ |11〉 〈11| ba-
sis to obliterate the different inputs on the polarization
qubits. This process postselected the system wavefunc-
tion into the 4-qubit cluster state |LC4〉. There is a 50%
probability of conducting a successful postselection for
such an input state. The final probabilistic gate was rem-
iniscent of the PBS gate [39] in the linear optics system.
When two photons meet at a PBS, only the superposition
of wavefunction components with the same polarization
results in coincident two-photon detection. Further gen-
eration of states |LC4(θ)〉 and |GHZ4(θ)〉 can be realized
by performing transformation R(θ) = cos θ + σx sin θ on
one of the polarization qubits. This gate is non-unitary
and probabilistic, as is common in the one-way quantum
computation scenario.

The experimental setup is shown in Fig. 2(b). We ex-
ploited Hong-Ou-Mandel (HOM) interference [43] to cer-
tify the spatial and temporal overlap of the two photons
at the PBS gate. As shown in the inset of Fig. 3, the visi-
bility of the HOM dip was 97.1%, sufficient for observing
the sharp Hardy-type paradox. Details about the setup
and the HOM interference can be found in the Methods
section.
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ℛ(θ)

ℛ

⊗

SPAD

SPAD

BBO HWPQWP
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CP P/NPBS

#1
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#6
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pol. 1

pol. 2
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path 2

(b)

(a) |〉

|〉

|〉

|〉

H H

H PBS
gate ℛ(θ)

|〉

|〉

Fig. 2. Experimental setup. (a) The quantum circuit for generation and measurement of the 4-qubit linear cluster state
|LC4(θ)〉 and GHZ state |GHZ4(θ)〉 using the polarization (pol.) and path degrees of freedom of a photon pair. The gates
in the dashed box are only implemented when generating the |LC4(θ)〉. (b) The photonic realization of the quantum circuit.
Aqua: the photon source, an ultraviolet pulsed laser pumps a sandwich β-barium borate (BBO) to generate two polarization
entangled photons after spatial and temporal compensation. Green: state preparation. Two photons are further encoded into
polarization and path modes. Navy blue: the PBS gate. Magenta: proposed nonunitary qubit rotation, capable of preparing the
extended cluster/GHZ state |LC4(θ)〉 , |GHZ4(θ)〉. Violet: joint measurements on polarization and path modes. IF interference
filter, HWP half-wave plate, QWP quarter-wave plate, CP temporal/spatial compensation crystal, BD beam displacer, PBS
polarizing beam splitter and P/NPBS a special beam splitter, with half of it coated as a PBS and the other half coated as a
non-polarizing beam splitter.

The results for GHZ-type paradox observation via
the perfect Hardy-type paradox observation (equation
(7)) are plotted in Fig. 3. The probabilities of ob-
serving event correlations contrary to the LHV predic-
tions for |LC4(0)〉 |GHZ4(0)〉 , and |GHZ4(π/4)〉 were
90.1%, 94.4%, and 96.2%, respectively. To statistically
refute the LHV models, we notice that each of the in-
vestigated Hardy-type paradoxes effectively contains four
contradictory predictions, and the error rate of each mea-
surement must be lower than 1/4 to violate the Bell’s
inequality (4). The calculated detection probabilities are
provided in the subplots of Fig. 3. All of the probabilities
fall well into the statistically significant region (≥ 0.75
for all and ≤ 0.25 for nothing) by at least 56.0, 72.7, and
93.9 standard deviations, corresponding to the GHZ-type
paradox for |LC4(0)〉 |GHZ4(0)〉 , and |GHZ4(π/4)〉, re-
spectively. Here, the errors are calculated by assuming
a Poisson distribution for counting statistics and resam-
pling over recorded data. The residual experimental error
is mainly due to the instability of the Mach-Zehnder in-
terferometer, and the non-unity visibility of two-photon
interference. Taking experimental imprecision into ac-
count, our results reasonably satisfy required constraints
and achieve high probability of successful observation of

nonclassical behaviors in the manner of a Hardy-type
paradox.

Next, from the data for |GHZ4(0)〉, we kept only the
events that register a result of +1 on the σx measurement
of the first qubit to prepare a |GHZ3〉 state. Under this
postselection, the remaining three qubits still exhibited
the GHZ-type paradox in equation (1); this manifesta-
tion can be employed to demonstrate the applications of
quantum state verification and entanglement detection.
The observed GHZ paradox precludes another possible
form of genuine three-qubit entanglement, namely, the
W -state [45]. By giving a value of I3 = 3.792, our exper-
imentally prepared three-qubit state shows a fidelity of
at least 89.6% compared with the theoretical three-qubit
GHZ state.

To experimentally test the steering paradox, we note
that the classical prediction holds because the conditional
density matrices for Bob are pure [29]. Consequently,
we need to estimate the lower bound for the dominant
eigenvalue of Bob’s unnormalized conditional density ma-
trix, and here the entanglement detection methodology
can again play a role. Experimentally, Bob was in-
structed to jointly measure σy ⊗ σx and σx ⊗ σy on
his two qubits when Alice measured σy ⊗ σx on her
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qubits, and jointly measure σx ⊗ σx and σy ⊗ σy of
his two qubits when Alice measured σz ⊗ σz on her
qubits. Because the spectra of σx ⊗ σy + σy ⊗ σx and
σx ⊗ σx + σy ⊗ σy are both {2, 0, 0,−2}, the expectation
value of 〈σx ⊗ σy + σy ⊗ σx〉 and 〈σx ⊗ σx + σy ⊗ σy〉 for
the conditional states can be exploited as a lower bound
for the largest eigenvalue of the unnormalized conditional
density matrix. This lower bound is further utilized to
calculate the quantum value of Is and experimentally
reject the LHS prediction [29]. The calculated quantum
value of Is is 1.805±0.014, which violates the prediction
of the LHS model by 59 standard deviations, thus mani-
festing the nonclassical phenomenon of EPR steering.

III. DISCUSSION

This work advanced the study of the GHZ-type para-
dox in and beyond graph states. In Theorem 1, we
present a unified construction of the GHZ-type paradox
that naturally includes previous results for graph states.
The paradox, when transformed into the Bell-type in-
equality, becomes an entanglement witness with a signif-
icantly lower threshold for refuting the separable models.
These Bell-type inequality can also be exploited to esti-
mate the fidelity between a quantum state and a target
graph state, hence providing a promising way of eval-
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Fig. 3. Experimental observation of the perfect Hardy-
type paradox. Data points: Calculated success probabili-
ties that eventuate in Hardy-type paradox plotted against the
state parameter θ. The error bars correspond to 1σ standard
deviation. Gray points are for generalized cluster states and
purple ones for GHZ states. Subplots: The sharp contradic-
tion between LHV models and quantum theory correspond-
ing to the Hardy constraints for given data points. Shaded
areas represent the effective region of 75% visibility threshold.
Dashed box: the Hong-Ou-Mandel dip of two photon interfer-
ence (visibility = 0.971) and the Gaussian fitted curve. Each
measurement result is recorded across a 30 second time span
with the pumping power set to 20mW.
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Fig. 4. Experimental observation of the Hardy-type
steering paradox. Left: calculated maximum eigenvalues
for Bob’s marginal states of the mixed state (6), conditioned
on Alice’s possible measurement settings and results. Right:
visualized quantum violation of Is against the LHS prediction
Is = 1. The error bars in both subplots correspond to 1σ
standard deviation.

uating the capacity of a quantum state in specific tasks
such as quantum error correction [46, 47] and magic state
distillation [48].

Along with the Hamiltonian approach, we found that
the GHZ-type paradox also exists in non-graph states.
On one hand, a family of non-graph states and mixed
states that also exhibits the GHZ-type paradoxes. This
observation suggests that even mixed states can serve
as resources for tasks like quantum pseudo-telepathy [49]
and l2 measurement-based quantum computation [50],
each of which typically requires highly-entangled pure
states. On the other hand, the non-graph mixed states
ρ(θ) can also be used for demonstrating the steering para-
dox 1c = 2q. We hence enriched quantum paradoxes for
more kinds of quantum nonlocality. Since the nonclas-
sical event occurs ideally in every round of experiment,
our method has the potential of detecting steering using
very few copies of states.

We have experimentally tested the GHZ-type para-
doxes for graph and non-graph states by measuring the
success probability in Hardy’s paradox under Hardy-type
constraints. Thus, we provide a more efficient way to
demonstrate the GHZ-type paradox by turning it into a
Hardy-type one. Our methodology also sheds some new
light on the construction of a genuine multipartite GHZ-
type paradoxes. In SI [29] we show that the mathematical
tool of local complementation [51, 52] further enlarges the
scope of quantum state verification. In particular, this
method of quantum state verification is applicable to all
the five-qubit graph states; we plan to investigate this
property in the near future.

IV. METHODS

Construction of GHZ-type paradoxes for graph
states.— To formulate unified GHZ-type paradoxes for
the graph states with at least one universal vertex, we
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start from the following observation: when two uncon-
nected vertices are both connected to a third vertex, a
minus sign appears in the product of the three stabi-
lizers for these vertices when they are spanned on the
Pauli basis, since the product on the third vertex gives
σzσxσz = −σx. This gives a sign difference between clas-
sical and quantum prediction.

A GHZ-type paradox arise when we choose some prod-
ucts of the stabilizing operators (modulo the minus signs
before the Pauli matrices), such that for every vertex,
any Pauli matrix appear even times, so the product of
the classical expectations is +1, regardless of the spe-
cific values assigned for the observables; and the three-
stabilizer structure appears odd times, so the product of
the quantum expectations is −1. Additionally, to involve
every vertex connected to the universal one in the GHZ-
type paradox, they are required to subject to two-setting
(instead of one-setting) measurements, so the paradox
cannot be simply reproduced by a biseparable quantum
state by setting the qubit on the +1-eigenstate of the
one-setting measurement [30].

For clarity, here we explicitly demonstrate the con-
struction on the case of n = even; the construction for
n = odd is very similar. To exploit the constraint of
two-setting measurement, an ansatz of operator choices
can be conjectured as {S1, (−1)aiSai1 SiSi+1}, so that the
first observable S1 forces a σz measurement on every pe-
ripheral vertices, leaving only one of σx and σy to be
measured. This in turn gives ai−1⊕Cii−1 = ai⊕Ci+1

i for
i = 3, 4, · · · , n, as can be deduced from the form of the
ansatz. Finally, the product of the quantum predictions
being −1 requires

∑n
i=2 ai = odd. Solving the logical

equations for ai yields the results in Theorem 1.
Experimetnal setup.— A 780nm mode-locked fem-

tosecond laser pumped an 1mm-thick bismuth triborate
(BiBO) crystal to prepare high-power ultraviolet beam,
which further pumped two identical 1mm-thick, type-
2 beamlike phase-matching [53] β-barium borate (BBO)
crystals, clipping on one true-zero-order half-wave plate
(HWP), to prepare bright entangled biphotons [54]. After
spatial and temporal compensation, the down-converted
wavefunctions from two pump processes were overlapped
and the fidelity of prepared state with |Ψ+〉 = (|HV 〉 +

|V H〉)/
√

2 is 0.991. Here, |0〉pol
= |H〉 and |1〉pol

= |V 〉
indicate the horizontal and vertical polarization of the
photon. After filtered by 3nm bandwidth interference
filter, the photons were guided to the main setup by
single-mode fibers (SMF), preceded and succeeded by one
HWP respectively, to compensate polarization dispersion
within the fiber.

In the central interference setup, the polarization
states of photons were converted to (|Φ+〉 = |HH〉 +

|V V 〉)/
√

2 by HWP #1 and #2 set at 22.5◦. Two
beam displacers (BDs) detoured horizontal polarized
photon wavefunctions to the upper (|0〉path

= |u〉 for up)
path, approximately 3mm away from the original lower
(|1〉path

= |d〉 for down) path occupied by vertical po-

larized photon wavefunctions. At this point, the two
path qubits were appended to the polarization qubits,
and the entire biphoton state is effectively a GHZ state
|GHZ4(θ = 0)〉 = (|HHuu〉 + |V V dd〉)/

√
2. Further

conversion to cluster state |LC4(θ = 0)〉 = (|HHuu〉 +
|HHdd〉 + |V V uu〉 − |V V dd〉)/2 was done by adjusting
the orientations of HWP #3 ∼ #6 and exploiting the
PBS gate, and the exact settings are given in SI [29].

To make joint path-polarization measurement, another
pair of BDs was introduced to combine the two paths
again and form a Mach-Zehnder intereferometer. Be-
fore each BD, two groups of polarization controllers, each
containing a quarter-wave plate (QWP) succeeded by a
HWP, were utilized to analyze state of polarization in
each path. By carefully tilting the BDs, we compensated
for the relative phase difference between the four possi-
ble paths. After the convergence of the displaced beams,
another group of polarization controllers, together with a
PBS, were used to measure the path state of each photon.
The single-photon avalanche detectors were exploited to
record coincidence counting rates. The length of the two
Mach-Zehnder interferometers in the experimental setup
was about 27.5cm. The integration time was 20s for each
data point, giving about 104 possible counts for each
state.

The non-unitary R(θ) gate is required for the realiza-
tion of variable θ. A Sagnac ring interferometer in the
dashed box in Fig. 2 is sufficient for such operation, which
was omitted in the actual experiment. The HWP at θ/2
rotates the photon polarization, meanwhile, the HWP
at 0◦ operating only on the counter-clockwise cycle of
the ring provides the non-unitarity. Adding temporal
compensation guarantees coherent superposition of the
output beam. Nevertheless, by introducing a compen-
sating HWP to flip the polarization state of a photon,
the θ = π/4 case was also experimentally realized.

The PBS gate and its benchmarking.— To illus-
trate the mechanism of the PBS gate, it is most intuitive
to work in the second quantization picture. Let α†µν de-
note the creation operator of the first photon on polariza-
tion mode µ and path mode ν, and β†µν denote which of
the second photon. Further, let γ†µν and δ†µν denote the
creation operators of the photon that exits the PBS gate
and propagates downward and rightward, respectively
(cf. Fig. 2(b)). Under this notation, the mode conversion
happening on the PBS gate can be expressed as α†Hν →
γ†Hν , α

†
V ν → iδ†V ν , β

†
Hν → δ†Hν , and β

†
V ν → iγ†V ν . When

the angles of the wave plates #3 ∼ #6 are set to θ3/2 ∼
θ6/2, the inbounding wavefunction on the PBS gate
is 1√

2
[(cos θ3α

†
Hu + sin θ3α

†
V u)(cos θ4β

†
Hu + sin θ4β

†
V u) +

(− sin θ5α
†
Hd + cos θ5α

†
V d)(− sin θ6β

†
Hd + cos θ6β

†
V d)]. Us-

ing the mode conversion, the outbounding modes are
1√
2
[(cos θ3γ

†
Hu + i sin θ3δ

†
V u)(cos θ4δ

†
Hu + i sin θ4γ

†
V u) +

(− sin θ5γ
†
Hd + i cos θ5δ

†
V d)(− sin θ6δ

†
Hd + cos θ6iγ

†
V d)].

However, only the terms with both γ and δ operators
result in coincident counting, so the final wavefunction
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reads 1√
2
[(cos θ3 cos θ4γ

†
Huδ

†
Hu − sin θ3 sin θ4γ

†
V uδ

†
V u) +

(sin θ5 sin θ6γ
†
Hdδ

†
Hd−cos θ5 cos θ6γ

†
V dδ
†
V d)]. Thus, we can

effectively generate the desired states by adjusting the
orientations of the wave plates.

The PBS gate works ideally when the wavefunctions of
the two incident photons are overlapped both spatially
and temporally. However, due to the intrinsic differ-
ence between wavepackets of the two photons produced in
type-II down-conversion [55], spectral filter and intrinsic
dispersion from SMF are not enough to render them iden-
tical. To synchronize the arrival time of the two photons
and characterize their indistinguishability, we exploit the
HOM interference [43]. Explicitly, we rotated the polar-
ization states of both photons to |D〉 = (|H〉 + |V 〉)/

√
2

after they had passed through the first pair of BDs, mea-
sured the two polarizations on |DA〉 basis at the final
detection, where |A〉 = (|H〉 − |V 〉)/

√
2, and projected

both of the path qubits on |u〉. By tuning the length of
the delay line, we can scan the HOM curve as is presented
in the inset of Fig. 3.

Data availability
The data that support the findings of this study are

available from the authors upon request.
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